A Spiking Independent Accumulator Model for Winner-Take-All Computation
نویسندگان
چکیده
Winner-take-all (WTA) mechanisms are an important component of many cognitive models. For example, they are often used to decide between multiple choices or to selectively direct attention. Here we compare two biologically plausible, spiking neural WTA mechanisms. We first provide a novel spiking implementation of the well-known leaky, competing accumulator (LCA) model, by mapping the dynamics onto a population-level representation. We then propose a two-layer spiking independent accumulator (IA) model, and compare its performance against the LCA network on a variety of WTA benchmarks. Our findings suggest that while the LCA network can rapidly adapt to new winners, the IA network is better suited for stable decision making in the presence of noise.
منابع مشابه
Spiking Inputs to a Winner-take-all Network
Recurrent networks that perform a winner-take-all computation have been studied extensively. Although some of these studies include spiking networks, they consider only analog input rates. We present results of this winner-take-all computation on a network of integrate-and-fire neurons which receives spike trains as inputs. We show how we can configure the connectivity in the network so that th...
متن کاملComputation with Spikes in a Winner-Take-All Network
The winner-take-all (WTA) computation in networks of recurrently connected neurons is an important decision element of many models of cortical processing. However, analytical studies of the WTA performance in recurrent networks have generally addressed rate-based models. Very few have addressed networks of spiking neurons, which are relevant for understanding the biological networks themselves ...
متن کاملGeneral-Purpose Computation with Neural Networks: A Survey of Complexity Theoretic Results
We survey and summarize the literature on the computational aspects of neural network models by presenting a detailed taxonomy of the various models according to their complexity theoretic characteristics. The criteria of classification include the architecture of the network (feedforward versus recurrent), time model (discrete versus continuous), state type (binary versus analog), weight const...
متن کاملComputational Tradeoffs in Biological Neural Networks: Self-Stabilizing Winner-Take-All Networks
We initiate a line of investigation into biological neural networks from an algorithmic perspective. We develop a simplified but biologically plausible model for distributed computation in stochastic spiking neural networks and study tradeoffs between computation time and network complexity in this model. Our aim is to abstract real neural networks in a way that, while not capturing all interes...
متن کاملFast computation with neural oscillators
Artificial spike-based computation, inspired by models of computations in the central nervous system, may present significant performance advantages over traditional methods for specific types of large scale problems. In this paper, we study new models for two common instances of such computation, winner-take-all and coincidence detection. In both cases, very fast convergence is achieved indepe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017